A human liver cell line exhibits efficient translation of HCV RNAs produced by a recombinant adenovirus expressing T7 RNA polymerase.
نویسندگان
چکیده
An in vitro system that supports the efficient growth of hepatitis C virus (HCV) and reflects its complete in vitro replication cycle has not yet been established. The establishment of a minigene RNA of HCV in mammalian cells could facilitate the study of virus-cell interactions and the molecular pathogenesis of this virus. We constructed a replication-deficient recombinant adenovirus expressing bacteriophage T7 RNA polymerase under the control of CAG promoter (AdexCAT7). A high level of T7 RNA polymerase was detectable for at least 11 days after inoculation. Cells infected with AdexCAT7 were then transfected with plasmids carrying the authentic T7 promoter, the 5' untranslated region (UTR) of encephalomyocarditis virus, a luciferase gene, and a T7 terminator (pT7EMCVLuc) or carrying the modified T7 promoter, the 5'UTR of HCV, a luciferase gene, the coding region of C-terminal of NS5B and the 3'UTR of HCV, a ribozyme of hepatitis D virus and a T7 terminator (pT7HCVLuc). Most of the cell lines examined supported a higher expression of luciferase by transfection with pT7EMCVLuc than with pT7HCVLuc. However, one cell line, FLC4, derived from a human hepatocellular carcinoma, exhibited very high reporter gene expression with pT7HCVLuc. In this cell line, transfection with RNA synthesized in vitro from pT7HCVLuc induced a higher level of reporter gene expression than RNA from pT7EMCVLuc. The T7-adenovirus system for the synthesis of HCV minigenes in vivo provides useful information on the molecular mechanisms of HCV translation in human liver cells.
منابع مشابه
Production of Recombinant Adenovirus Containing Human Interlukin-4 Gene
Objective(s) Recombinant adenoviruses are currently used for a variety of purposes, including in vitro gene transfer, in vivo vaccination, and gene therapy. Ability to infect many cell types, high efficiency in gene transfer, entering both dividing and non dividing cells, and growing to high titers make this virus a good choice for using in various experiments. In the present experiment, a reco...
متن کاملInternal ribosome entry site within hepatitis C virus RNA.
The mechanism of initiation of translation on hepatitis C virus (HCV) RNA was investigated in vitro. HCV RNA was transcribed from the cDNA that corresponded to nucleotide positions 9 to 1772 of the genome by using phage T7 RNA polymerase. Both capped and uncapped RNAs thus transcribed were active as mRNAs in a cell-free protein synthesis system with lysates prepared from HeLa S3 cells or rabbit...
متن کاملComparison of picornaviral IRES-driven internal initiation of translation in cultured cells of different origins.
We recently compared the efficiency of six picornaviral internal ribosome entry segments (IRESes) and the hepatitis C virus (HCV) IRES for their ability to drive internal initiation of translationin vitro. Here we present the results of a similar comparison performed in six different cultured cell lines infected with a recombinant vaccinia virus expressing the T7 polymerase and transfected with...
متن کاملConstruction of a Minigenome Rescue System for Measles Virus, AIK-c Strain
Background:In the recent decade, the reverse genetics method has been broadly used for rescue of negative-stranded RNA viruses from cDNA or viral minigenomes. This technique has been applied to study different steps in virus replication and virus-host interactions. Reverse genetics could also be implemented for design of new vaccines. The T7 RNA polymerase activity as well as virus (nucleocapsi...
متن کاملProduction of Cyclin D1 specific siRNAs by double strand processing for gene therapy of esophageal squamous cell carcinoma
Background: RNAi (RNA interference) is a new strategy in gene therapy and biotechnology which provides new promises in the treatment of different diseases such as cancer and viral diseases. CCND1 which is a key gene in cell cycle is amplified and over expressed in esophageal cancer. The objective of this study was production and siRNAs for CCND1, the key gene in cell cycle. Materials and Metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Virology
دوره 250 1 شماره
صفحات -
تاریخ انتشار 1998